Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues
نویسندگان
چکیده
Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.
منابع مشابه
Functional optoacoustic human angiography with handheld video rate three dimensional scanner☆
Optoacoustic imaging provides a unique combination of high optical contrast and excellent spatial resolution, making it ideal for simultaneous imaging of tissue anatomy as well as functional and molecular contrast in deep optically opaque tissues. We report on development of a portable clinical system for three-dimensional optoacoustic visualization of deep human tissues at video rate. Studies ...
متن کاملNoninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography.
Current functional neuroimaging methods are not adequate for high-resolution whole-brain visualization of neural activity in real time. Here, we show imaging of fast hemodynamic changes in deep mouse brain using fully noninvasive acquisition of five-dimensional optoacoustic data from animals subjected to oxygenation stress. Multispectral video-rate acquisition of three-dimensional tomographic d...
متن کاملOptoacoustic Monitoring of Physiologic Variables
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vess...
متن کاملHigh-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion
Functional imaging of mouse models of cardiac health and disease provides a major contribution to our fundamental understanding of the mammalian heart. However, imaging murine hearts presents significant challenges due to their small size and rapid heart rate. Here we demonstrate the feasibility of high-frame-rate, noninvasive optoacoustic imaging of the murine heart. The temporal resolution of...
متن کاملValue of combining dynamic contrast enhanced ultrasound and optoacoustic tomography for hypoxia imaging
Optoacoustic imaging (OAI) can detect haemoglobin and assess its oxygenation. However, the lack of a haemoglobin signal need not indicate a lack of perfusion. This study uses a novel method to assist the co-registration of optoacoustic images with dynamic contrast enhanced ultrasound (DCE-US) images to demonstrate, in preclinical tumour models, the value of combining haemoglobin imaging with a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016